لیزر


دسته‌بندی: مقاله و کتاب
به‌روزرسانی: ۱۴۰۱/۰۶/۱۱
مطالعه: حدود ۱۹ دقیقه
لیزر

لیزر مخفف عبارت light amplification by stimulated emission of radiation می باشد و به معنای تقویت نور توسط تشعشع تحریک شده است.اولین لیزر جهان توسط تئودور مایمن اختراع گردید و از یاقوت در ان استفاده شده بود.

اولین لیزر جهان توسط تئودور مایمن اختراع گردید و از یاقوت در ان استفاده شده بود.

در سال ۱۹۶۲ پروفسورعلی جوان اولین لیزر گازی را به جهانیان معرفی نمود و بعدها نوع سوم وچهارم لیزرها که لیزرهای مایع و نیمه رسانا بودند اختراع شدند.

در سال ۱۹۶۷ فرانسویان توسط اشعه لیزر ایستگاههای زمینی شان دو ماهواره خود را در فضا تعقیب کردند، بدین ترتیب لیزر بسیار کار بردی به نظر آمد.

نوری که توسط لیزر گسیل می گردد در یک سو و بسیار پر انرژی و درخشنده است که قدرت نفوذ بالایی نیز دارد بطوریکه در الماس فرو میرود.

امروزه استفاده از لیزر در صنعت بعنوان جوش اورنده فلزات و بعنوان چاقوی جراحی بدون درد در پزشکی بسیار متداول است.

لیزرها سه قسمت اصلی دارند:

  1. پمپ انرژی یا چشمه انرژی: که ممکن است این پمپ اپتیکی یا شیمیایی و یاحتی یک لیزر دیگر باشد.
  2. ماده پایه وزفعال که نام گذاری لیزر بواسطه ماده فعال صورت میگیرد.
  3. مشدد کننده اپتیکی : شامل دو اینه بازتابنده کلی و جزئی می باشد.

طرز کار یک لیزر یاقوتی

پمپ انرژی در این لیزر از نوع اپتیکی میباشد ویک لامپ مارپیچی تخلیه است(flash tube) که بدور کریستال یاقوت مدادی شکلی پیچیده شده(ruby) کریستال یاقوت ناخالص است و ماده فعال ان اکسید برم و ماده پایه ان اکسید الومینم است.

بعد از فعال شدن این پمپ انرژی کریستال یا قوت نور باران می شودو بعضی از اتمها رادر اثرجذب القایی-stimulated absorption برانگیخته کرده وبه ترازهای بالاتر می برد.

پدیده جذب القایی: اتم برانگیخته = اتم+فوتون

با ادامه تشعشع پمپ تعداد اتمهای برانگیخته بیشتر از اتمهای با انرژی کم میشود به اصطلاح وارونی جمعیت رخ می دهد طبق قانون جذب و صدور انرژی پلانک اتم های برانگیخته توان نگهداری انرژی زیادتر را نداشته وبه تراز با انرژی کم بر میگردند و انرژی اضافی را به صورت فوتون ازاد می کنند که به این فرایند گسیل خود بخودی گفته می شود ولی از انجایی که پمپ اپتیکی مرتب به اتم ها فوتون می تاباند پدیده دیگری زودتر اتفاق می افتد که به آن گسیل القایی stimulated emission گفته می شود.

وقتی یک فوتون به اتم برانگیخته بتابد ان را تحریک کرده و زودتر به حالت پایه خود بر می گرداند.

گسیل القایی: اتم+دو فوتون = اتم برانگیخته+ فوتون

این فوتون ها دوباره بعضی از اتم ها را بر انگیخته میکنند و واکنش زنجیر وار تکرار می شود. بخشی از نور ها درون کریستال به حرکت در می ایند که توسط مشددهای اپتیکی درون کریستال برگرداننده می شوند و این نورها در همان راستای نور اولیه هستد به تدریج با افزایش شدت نور لحظه ای می رسد که نور لیزر از جفتگر خروجی با روشنایی زیاد بطور مستقیم خارج می شود .

لیزر CO۲ لیزرهای گازی نوع خاصی از لیزر است که در آن گازی داخل یک لوله ی شفاف مثل لامپ مهتابی می رود.

عبور جریان از این لوله باعث رفت و آمد ِ فوتون می شود، اولین نوع ِ این لیزرها هلیم نئون بود. یعنی همین لیزرهای خانگی و مدارس. این لیزر ِ ایمن توسط یک ایرانی در مؤسسه ی بل به نام دکتر علی جوان اختراع شد.

نوع دیگر لیزر لیزر CO۲ است، البته در محفظه ی آن هلیوم و مقداری نیتروژن هم هست.

گاز نیتروژن انرژی ِ الکترودها را ذخیره می کند. پس از برخورد مولکولهای نیتروژن به مولکول CO۲ این انرژی انتقال می یابد. مولکول های CO۲ برانگیخته می شوند. گاز هلیوم به انتقال ِ انرژی کمک می کند، همچنین کمک می کند تا مولکول های دی اکسید کربن زودتر به ترازهای انرژی عادی یا حالت عادی خود برگردند. این لیزرها بازده خوبی دارند.

 کاربردهای لیزر :

تمام نگاری تمام نگاری ( هولوگرافی) یک تکنیک انقلابی است که عکسبرداری سه بعدی (یعنی کامل ) از یک جسم و یا یک صحنه را ممکن می کند.

این تکنیک در سال ۱۹۴۸ توسط گابور ابداع شد ( در آن زمان به منظور بهتر کرده توان تفکیک میکروسکوپ الکترونی پیشنهاد شد) و به صورت یک پیشنهاد عملی در آمدو اما قابلیت واقعی این تکنیک پس از اختراع لیزر نشان داده شد.

اساس تمام نگاری به این صورت است که باریکه لیزر بوسیله آینه که قسمتی از نور را عبور می دهد به دو باریکه ( بازتابیده و عبوری) تقسیم می شوند. باریکه بازتابیده مستقیما به صفحه حساس به نور برخورد می کند در حالی که باریکه عبوری جسمی را که باید تمام نگاری شود روشن می کند.

به این ترتیب قسمتی از نوری که از جسم پراکنده شده هم روی صفحه حساس ( فیلم ) می افتد. به علت همدوس بودن باریکه ها یک نقش تداخلی از ترکیب دو باریکه روی صفحه تشکیل می شود حالا اگر این فیلم ظاهر شود و تحت بزرگنمایی کافی بررسی شود می توان این فریزهای تداخلی را مشاهده کرد.

فاصله بین دو فریز تاریک متوالی معمولا حدود ۱ میکرومتر است. این نقش تداخلی پیچیده است و هنگامی که صفحه را به وسیله چشم بررسی می کنیم به نظر نمی رسد که حامل تصویر مشابه با جسم اولیه باشد اما این فریزهای تداخلی در واقع حامل ضبط کاملی از جسم اولیه است.

حال فرض کنید که صفحه ظاهر شده را دوباره به محلی که در معرض نور قرار داشت بازگردانیم و جسم تحت مطالعه را برداربم باریکه بازتابیده اکنون با فریزهای روی صفحه برهمکنش می کنند و دوباره در پشت صفحه یک باریکه پراشیده ایجاد می کند، بنابراین ناظری که به صفحه نگاه می کند جسم را در پشت صفحه می بیند طوری که انگار هنوز هم جسم در آنجاست.

یکی از جالبترین خصوصیات تمام نگاری این است که جسم بازسازی شده رفتار سه بعدی نشان می دهد بنابراین با حرکت دادن چشم از محل تماشا می توان طرف دیگر جسم را مشاهده کرد.

توجه کنید که برای ضبط تمام نگار باید سه شرط اصلی را برآورد:

  1. درجه همدوسی نور لیزر باید به اندازه کافی باشد تا فریزهای تداخلی در روی صفحه تشکیل شود.
  2. وضعیت نسبی جسم – صفحه و باریکه لیزر نباید در هنگام تاباندن نور به صفحه که حدود چند ثانیه طول می شکد تغییر کند در واقع تغییر محل نسبی باید کمتر از نصف طول موج لیزر باشد تا از درهم شدن نقش تداخلی جلوگیری کند.
  3. قدرت تفکیک صفحه عکاسی باید به اندازه کافی زیاد باشد تا بتواند فریزهای تداخلی را ضبط کند.

تمام نگاری به عنوان یک تکنیک ضبط و بازسازی تصویر سه بعدی بیشترین موفقیت را تاکنون در کاربردهای هنری داشته است تا در کاربردهای علمی، اما بر اساس تمام نگاری از یک تکنیک تداخل سنجی تمام نگاشتی در کاربردهای علمی به عنوان وسیله ای برای ضبط و اندازه گیری واکنشها و ارتعاشات اجسام سه بعدی استفاده شده است.

laser-intro

اندازه گیری و بازرسی

اندازه گیری و بازرسی خصوصیات جهتمندی درخشایی و تکفامی لیزر باعث کاربردهای مفید زیادی برای اندازه گیری و بازرسی در رشته مهندسی سازه و فرایندهای صنعتی کنترل ابزار ماشینی شده است.

در این بخش تعیین فاصله بین دو نقطه و بررسی آلودگی را نیز مد نظر قرار می دهیم. یکی از معمولترین استفاده های صنعتی لیزر هم محور کردن است.

برای اینکه یک خط مرجع مستقیم برای هم محور کردن ماشین آلات در ساخت هواپیما و نیز در مهندسی سازه برای ساخت بناها پلها و یا تونلها داشته باشیم استفاده از جهتمندی لیزر سودمند است.

در این زمینه لیزر به خوبی جای وسایل نوری مانند کلیماتور و تلسکوپ را گرفته است. معمولا از یک لیزر هلیم – نئون با توان کم استفاده می شود و هم محور کردن عموما به کمک آشکارسازهای حالت جامد به شکل ربع دایره ای انجام می شود. محل برخورد باریکه لیزر روی گیرنده با مقدار جریان نوری روی هر ربع دایره معین می شود.

در نتیجه هم محور شدن بستگی به یک اندازه گیری الکتریکی دارد و در نتیجه نیازی به قضاوت بصری آزمایشگر نیست. در عمل دقت ردیف شدن از حدود ۵?m تا حدود ۲۵?m به دست آمده است.

از لیزر برای اندازه گیری مسافت هم استفاده شده است. روش استفاده از لیزر بستگی به بزرگی طول مورد نظر دارد. برای مسافت های کوتاه تا ۵۰ متر روشهای تداخل سنجی به کار گرفته می شوند که در آن ها از یک لیزر هلیم–نئون پایدار شده فرکانسی به عنوان منبع نور استفاده می شود.

برای مسافتهای متوسط تا حدود ۱ کیلومتر روشهای تله متری شامل مدوله سازی دامنه به کار گرفته می شود. برای مسافت های طولانی تر می توان زمان در راه بودن تپ نوری را که از لیزر گسیل شده است و از جسمی بازتابیده می شود اندازه گیری کرد.

در اندازه گیری تداخل سنجی مسافت از تداخل سنج مایکلسون استفاده می شود. باریکه لیزر به وسیله یک تقسیم کننده نور به یک باریکه اندازه گیری و یک باریکه مرجع تقسیم می شود باریکه مرجع با یک آینه ثابت بازتابیده می شود در حالی که باریکه اندازه گیری از آینه ای که به جسم مورد اندازه گیری متصل شده است بازتاب پیدا می کند. سپس دو باریکه بازتابیده مجددا با یکدیگر ترکیب می شوند به طوری که با هم تداخل می کنند و دامنه ترکیبی آن ها با یک آشکار ساز اندازه گیری می شود.

هنگامی که محل جسم در جهت باریکه به اندازه نصف طول موج لیزر تغییر کند سیگنال تداخل از یک ماکزیموم به یک مینیموم می رسد و سپس دوباره ماکزیموم می شود. بنابراین یک سیستم الکترونیکی شمارش فریزها می تواند اطلاعات مربوط به جابجایی جسم را به دست دهد. این روش اندازه گیری معمولا در کارگاههای ماشین تراش دقیق مورد استفاده قرار می گیرد و امکان اندازه گیری طول با دقت یک در میلیون را می دهد.

باید یادآوری کرد که در این روش فقط می توان فاصله را نسبت به یک مبدا اندازه گیری کرد. برتری این روش در سرعت دقت و انطباق با سیستم های کنترل خودکار است.

برای فاصله های بزرگتر از روش تله متری مدوله سازی دامنه استفاده می شود و فاصله روی اختلاف فاز بین دو باریکه لیزر مدوله می شود و فاصله از روی اختلاف فار بین دو باریکه گسیل شده و بازتابیده معین می شود.

باز هم دقت یک در میلیون است. از این روش در مساحی زمین و نقشه کشی استفاده می شود. برای فواصل طولانی تر از ۱ کیلومتر فاصله با اندازه گیری زمان پرواز یک تپ کوتاه لیزری گسیل شده از لیزر یاقوت و یا لیزر CO۲ انجام می گیرد.

این کاربردها اغلب اهمیت نظامی دارند و در بخشی جداگانه بحث خواهد شد کاربردهای غیر نظامی مانند اندازه گیری فاصله بین ماه و زمین با دقتی حدود ۲۰ سانتی متر و تعیین برد ماهواره ها هم قابل ذکر است.

درجه بالای تکفامی لیزر امکان استفاده از آن را برای اندازه گیری سرعت مایعات و جامدات به روش سرعت سنجی دوپلری فراهم می سازد. در مورد مایعات می توان باریکه لیزر را به مایع تابانده و سپس نور پراکنده شده از آن را بررسی کرد. چون مایع روان است فرکانس نور پراکنده شده به خاطر اثر دوپلر کمی با فرکانس نور فرودی تفاوت دارد. این تغییر فرکانس متناسب با سرعت مایع است.

بنابراین با مشاهده سیگنال زنش بین دو پرتو نور پراکنده شده و نور فرودی در یک آشکار ساز می توان سرعت مایع را اندازه گیری بدون تماس انجام می شود. و نیز به خاطر تکفامی بالای نور لیزر برای برد وسیعی از سرعتها خیلی دقیق است.

یکی از سرعت سنجهای خاص لیزر اندازه گیری سرعت زاویه ای است. وسیله ای که برای این منظور طراحی شده است ژیروسکوپ لیزرینامیده می شود و شامل لیزری است که کاواک آن به شکل حلقه ای است که از سه آینه به جای دو آینه معمول استفاده می شود.

این لیزر می تواند نوسان مربوط به انتشار نور را هم در جهت عقربه ساعت و هم در خلاف آن به دور حلقه تامین کند. فرکانس های تشدیدی مربوط به هر دو جهت انتشار را می توان با استفاده از این شرط که طول تشدید کننده ( حلقه ای ) برابر مضرب صحیحی از طول موج باشد به دست آورد.

اگر حلقه در حال چرخش باشد در مدت زمانی که لازم است نور یک دور کامل بزند زاویه آینه های تشدید کننده به اندازه یک مقدار خیلی کوچک ولی محدود حرکت خواهد کرد. طول موثر برای باریکه ای در همان جهت چرخش تشدید کننده می چرخد کمی بیشتر از باریکه ای است که در جهت عکس می چرخد. در نتیجه فرکانس های دو باریکه ای که در خلاف جهت یکدیگر می چرخند کمی تفاوت دارد و اختلاف این فرکانسهای متناسب با سرعت زاویه ای تشدید کننده است.

با ایجاد تپش بین دو باریکه می توان سرعت زاویه ای را اندازه گیری کرد. ژیروسکوپ لیزری امکان اندازه گیری با دقتی را فراهم می کند که قابل مقایسه با دقت پیچیده ترین و گرانترین ژیروسکوپ های معمولی است. کاربرد مصرفی دیگر و یا به عبارت بهتر کاربرد مصرفی واقعی عبارت از دیسک ویدئویی و دیسک صوتی است.

یک دیسک ویدئو حامل یک برنامه ویدئویی ضبط شده است که می توان آن را بر روی دستگاه تلویزیون معمولی نمایش داد. سازندگان دیسک ویدئویی اطلاعات را با استفاده از یک سابنده روی آن ضبط می کنند که این اطلاعات به وسیله لیزر خوانده می شود.

یک روش معمول ضبط شامل برشهای شیاری با طول ها و فاصله های مختلف است عمق این شیارها ۴/۱ طول موج لیزری است که از آن در فرایند خواندن استفاده می شود.

در موقع خواندن باریکه لیزر طوری کانونی می شود که فقط بر روی یک شیار بیفتد. هنگامی که شیار در مسیر لکه باریکه لیزر واقغ شود بازتاب به خاطر تداخل ویرانگر بین نور بازتابیده از دیوارهای شیار و به آن کاهش پیدا می کند. به عکس نبودن شیار باعث یک بازتاب قوی می شود. بدین طریق می توان اطلاعات تلویزیونی را به صورت رقمی ضبط کرد.

کاربرد دیگر لیزرها نوشتن و خواندن اطلاعات در حافظه نوری در کامپیوترهاست لطف ای حافظه نوری هم در توان دسترسی به چگالی اطلاعات حدود مرتبه طول موج است. تکنیک ضبط عبارت است از ایجاد سوراخ های کوچکی در یک ماده مات یا نوعی تغییر خصوصیت عبور و بازتاب ماده زیر لایه که با استفاده از لیزرهای با توان کافی حاصل می شود و حتی می تواند فیلم عکاسی باشد. اما هیچ یک از این زیر لایه ها را نمی توان پاک کرد.

حلقه های قابل پاک کردن بر اساس گرما مغناطیسی فروالکتریک و فوتوکرومیک ساخته شده اند. همچنین حافظه های نوری با استفاده از تکنیک تمام نگاری نیز طراحی شده اند. نتیجتا اگر چه از لحاظ فنی امکان ساخت حافظه های نوری به وجود آمده است ولی ارزش اقتصادی آن ها هنوز جای بحث دارد.

آخرین کاربردی که در این بخش اشاره می کنیم گرافیک لیزری است.

در این تکنیک ابتدا باریکه لیزر بوسیله یک سیستم مناسب روبشگر بر روی یک صفحه حساس به نور کانونی می شود و در حالی که شدت لیزر به طور همزمان با روبش از نظر دامنه مدوله می شود به طوری که بتوان آن را بوسیله کامپیوتر تولید کرد.( مانند سیستم های چاپ کامپیوتری بدون تماس ) و یا آنها را به صورت سیگنال الکتریکی از یک ایستگاه دور دریافت کرد ( مانند پست تصویری).

در مورد اخیر می توان سیگنال را به وسیله یک یک سیستم خواننده مناسب با کمک لیزر تولید کرد. وسیله خواندن در ایستگاه دور شامل لیزر با توان کم است که باریکه کانونی شده آن صفحه ای را که باید خوانده شود می روبد.

یک آشکارساز نوری باریکه پراکنده از نواحی تاریک و روشن روی صفحه را کنترل می کند و آن را به سیگنال الکتریکی تبدیل می کند. سیستم های لیزری رونوشت اکنون به طور وسیعی توسط بسیاری از ناشران روزنامه ها برای انتقال رونوشت صفحات روزنامه به کار برده می شود.

ارتباط نوری

ارتباط نوری استفاده از باریکه لیزر برای ارتباط در جو به خاطر دو مزیت مهم اشتیاق زیادی برانگیخت:

الف) اولین علت دسترسی به پهنای نوار نوسانی بزرگ لیزر است. زیرا مقدار اطلاعات قابل انتقال روی یک موج حامل متناسب با پهنای نوار آن است. فرکانس موج حامل از ناحیه میکروموج بخ ناحیه نور مرئی به اندازه ۱۰۴ برابر افزایش می یابد و در نتیجه امکان استفاده از یک پهنای بزرگتر را به ما می دهد.

ب) علت دوم طول موج کوتاه تابش است. چون طول موج لیزر نوعا حدود ۱۰۴ مرتبه کوچکتر از امواج میکرو موج است با قطر روزنه یکسان D واگرایی امواج نوری به اندازه ۱۰۴ مرتبه نسبت به واگرایی امواج میکرو موج کوچکتر است. بنابراین برای دستیابی به این واگرایی آنتن یک سیستم اپتیکی می تواند به مراتب کوچکتر باشد. اما این دو امتیاز مهم با این واقعیت خنثی می شوند که باریکه نوری تحت شرایط دید ضعیف در جو به شدت تضعیف می شود.

در نتیجه استفاده از لیزرها در ارتباطات فضای باز ( هدایت نشده ) فقط در مورد این موارد توسعه یافته اند:

الف) ارتباطات فضایی بین دو ماهواره و یا بین یک ماهواره و یک ایستگاه زمینی که در یک شرایط جوی مطلوب قرار گرفته است. لیزرهایی که در این مورد استفاده می شوند عبارتند از : Nd:YAG ( با آهنگ انتقال ۱۰۹ بیت در ثانیه ) و یا CO۲ با آهنگ انتقال ۳*۱۰۸ بیت در ثانیه ). گرچه CO۲ نسبت به Nd: YAG دارای بازدهی بالاتری است و لی دارای این اشکال است که نیاز به سیستم آشکارسازی پیچیده تری دارد و طول موج آن هم به اندازه ۱۰ مرتبه بزرگتر از طول موج Nd : YAG است.

ب) ارتباطات بین دو نقطه در یک مسافت کوتاه مثلا انتقال اطلاعات درون یک ساختمان. برای این منظور از لیزرهای نیمرسانا استفاده می شود. اما زمینه اصلی مورد توجه در ارتباطات نوری مبتنی بر انتقال از طریق تارهای نوری است. انتقال هدایت شده نور در تارهای نوری پدیده ای است که از سالها پیش شناخته شده است اما تارهای نوری اولیه فقط در مسافت های خیلی کوتاه مورد استفاده قرار می گرفتند مثلا کاربرد متعارف آن ها در وسایل پزشکی برای اندوسکوپی است.

بنابراین در اواخر سال ۱۹۶۰ تضعیف در بهترین شیشه های نوری در حدود ۱۰۰۰ دسی بل بر کیلومتر بود. از آن زمان پیشرفت تکنیکی شیشه و کوارتز باعث تغییر شگفت انگیز در این عدد شده است به طوری که این تضعیف برای کوارتز به ۵/۰ دسی بل بر کیلومتر رسیده است.

این تضعیف فوق العاده کوچک آینده مهمی را برای کاربرد تارهای نوری در ارتباطات راه دور نوید می دهد . سیستم ارتباطات تارهای نوری نوعا شامل یک چشمه نور یک جفت کننده نوری مناسب برای تزریق نور به تارها و درانتها یک فوتودیود است که باز هم به تار متصل شده است.

تکرار کننده شامل یک گیرنده و یک گسیلنده جدید است. چشمه نور سیستم اغلب لیزرهای نیمرسانای نا هم پیوندی دوگانه است.

اخیرا طول عمر این لیزرها تا حدود ۱۰۶ ساعت رسیده است. گرچه تا کنون اغلب از لیزر گالیم ارسنید GaAs استفاده شده است ولی روش بهتر استفاده از لیزرهای نا هم پیوندی است که در آنها لایه فعال ترکیبی از آلیاژ چهارگانه به صورت In۱-x Gax Asy P۱-y است.

در این حالت لبه های P ,n پیوندگاه از ترکیب دوگانه InP تشکیل شده است و با استفاده از ترکیب y=۲v۲x می توان ترتیبی داد که چهار آلیاژ چهارگانه شبکه ای که با InP جور شود با انتخاب صحیح x طول موج تابش را طوری تنظیم کرد که در اطراف ?m ۳/۱ و یا اطراف ۶/۱ ?m واقع شود که به ترتیب مربوط به دو مینیموم جذب در تار کوارتز هستند.

بسته به قطر d هسته مرکزی تار ممکن است از نوع تک مدباشد برای آهنگ انتقال متداول فعلی حدود ۵۰ مگابیت در ثانیه معمولا از تارهای چند مدی استفاده می شود.

برای آهنگ انتقال های بیشتر تارهای تک مدی مناسبتر به نظر می رسند. گیرنده معمولا یک فوتودیود بهمنی است اگر چه ممکن است از یک دیود PIN و یک دیود تقویت کننده حالت جامد مناسب نیز استفاده کرد.

لیزر در فیزیک و شیمی

لیزر در فیزیک و شیمی اختراع لیزر و تکامل آن وابسته به معلومات پایه ای است که در درجه اول از رشته فیزیک و بعد از شیمی گرفته شده اند.

بنابراین طبیعی است که استفاده از لیزر در فیزیک و شیمی از اولین کاربردهای لیزر باشند رشته دیگری که در آن لیزر نه تنها امکانات موجود را افزایش داده بلکه مفاهیم کاملا جدیدی را عرضه کرده است طیف نمایی است.

اکنون با بعضی از لیزرها می توان پهنای خط نوسانی را تا چند ده کیلوهرتز باریک کرد ( هم در ناحیه مرئی و هم در ناحیه فروسرخ ) و با این کار اندازه گیری های مربوط به طیف نمایی با توان تفکیک چند مرتبه بزرگی ( ۳ تا ۶) بالاتر از روش های معمولی طیف نمایی امکان پذیر می شوند.

لیزر همچنین باعث ابداع رشته جدید طیف نمایی غیر خطی شد که در آن تفکیک طیف نمایی خیلی بالاتر از حدی است که معمولا با اثرهای پهن شدگی دوپلر اعمال می شود. این عمل منجر به بررسیهای دقیقتری از خصوصیات ماده شده است.

در زمینه شیمی از لیزر هم برای تشخیص و هم برای ایجاد تغییرات شیمیایی برگشت ناپذیر استفاده شده است. ( فوتو شیمی لیزری) به ویژه در فون تشخیص باید از روش های (پراکندگی تشدیدی رامان ) و ( پراکندگی پاد استوکس همدوس رامان ) (CARS) نام ببریم. به وسیله این روشها می توان اطلاعات قابل ملاحظه ای درباره خصوصیات مولکولهای چند اتمی به دست آورد ( یعنی فرکانس ارتعاشی فعال رامن – ثابتهای چرخشی و ناهماهنگ بودن فرکانس).

روش CARS همچنین برای اندازه گیری غلظت و دمای یک نمونه مولکولی در یک ناحیه محدود از فضا به کار می رود. از این توانایی برای بررسی جزئیات فرایند احتراق شعله و پلاسما ( تخلیه الکتریکی) بهره برداری شده است.

شاید جالبتری کاربرد شیمیایی ( دست کم بالقوه ) لیزر در زیمنه فوتو شیمی باشد. اما باید در نظر داشته باشیم به خاطر بهای زیاد فوتونهای لیزری بهره برداری تجاری از فوتوشیمی لیزری تنها هنگامی موجه است که ارزش محصول نهایی خیلی زیاد باشد. یکی از این موارد جداسازی ایزوتوپها است.

برای نوشتن دیدگاه وارد حساب کاربری خود شوید.

در حال بارگذاری دیدگاه‌ها ...
elit. felis justo id Praesent pulvinar Aenean Praesent amet, velit, sed